

**EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY
BASED PROPELLERS ON CORROSION RESISTANCE**

THESIS

IRUL IRAWADI

20210110051

**MECHANICAL ENGINEERING DEPARTMENT
FACULTY OF ENGINEERING, COMPUTERS AND
DESIGN NUSA PUTRA UNIVERSITY
OF SUKABUMI**

2025

**EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY
BASED PROPELLERS ON CORROSION RESISTANCE**

THESIS

Submitted to Fulfill One of the Requirements in Pursuing
Bachelor of Engineering Degree

IRUL IRAWADI

20210110051

**MECHANICAL ENGINEERING DEPARTMENT
FACULTY OF ENGINEERING, COMPUTERS AND
DESIGN NUSA PUTRA UNIVERSITY
OF SUKABUMI**

2025

AUTHOR'S DECLARATION SHEET

TITLE : EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY BASED PROPELLERS ON CORROSION RESISTANCE

NAME : IRUL IRAWADI

Student ID 20210110051

“I declare and I am truly responsible that this thesis is my own work except for excerpts and summaries, each of which I have explained the source of. If at any time later another party claims that this thesis is his work, accompanied by sufficient evidence, then I am willing to have my Bachelor of Engineering degree revoked along with all rights and obligations attached to that degree.”

IRUL IRAWADI

Author

THESIS APPROVAL SHEET

TITLE : EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY BASED PROPELLERS ON CORROSION RESISTANCE

NAME : IRUL IRAWADI

Student ID 20210110051

This thesis has been reviewed and approved

Sukabumi, September 27, 2025

Head of Mechanical Engineering
Department

Academic Advisor,

Lazuardi Akmal Islami, M.Si.

NIDN. 0415039402

Lazuardi Akmal Islami, M.Si.

NIDN. 0415039402

THESIS APPROVAL SHEET

TITLE : EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY BASED PROPELLERS ON CORROSION RESISTANCE
NAME : IRUL IRAWADI
Student ID 20210110051

This Thesis Has Been Examined And Defended Before The Board Of Examiners At The Thesis Examination On August 29, 2025. In Our Opinion, This Thesis Is Adequate In Terms Of Quality For The Purpose Of Awarding The Degree Of Bachelor Of Engineering.

Sukabumi, September 27, 2025

Academic Advisor

Chief Examiner

Lazuardi Akmal Islami M, Si.
NIDN. 0415039402

Prof. Dr. Sivakumar N S, B.E., M.E., Ph.D.
NIP. 0120240039

Head of Mechanical Engineering
Departement

Plh. Dean of the Faculty of Engineering,
Computer Science and Design (FECD)

Lazuardi Akmal Islami M, Si.
NIDN. 0415039402

Ir. Paikun, S.T., M.T., IPM., ASEAN Eng.
NIDN. 0402037401

MOTTO

“Aku selalu takut dengan hari ini, namun aku sadar bahwa ketakutan ini hanya akan menghambat proses perjalananku esok hari.”

-Penduduk Bumi-

“Sebuah penantian akan selalu memiliki dua jawaban, pertama sesuai harapan dan yang kedua adalah kekecewaan.”

-Kepala Suku-

“Neither God nor the Devil can give aid to those without the will to fight”

**This Thesis is Dedicated to My Mother, My Little Brother, My Teachers and
My Friends**

**Nusa Putra
The One I Love So Much**

ABSTRACT

Aluminum waste as a component of ship propeller manufacturing is often faced with the problem of damage due to seawater corrosion. Anodizing methods are required to increase the resistance of the propeller to corrosion. This study was aim to determine the effect of anodizing time on corrosion resistance and alumina layer growth on propellers. The aluminum waste to be anodized is cut according to time variations of (a) 30 minutes, (b) 45 minutes, (c) 60 minutes, and (TP) without treatment with a size of $3\text{cm} \times 3\text{cm} \times 5\text{mm}$. The tests carried out were corrosion tests (Potentiodynamic Polarization & EIS) and Microstructure Observation (SEM). Results from polarization corrosion and EIS testing on 3.5 wt% NaCl media from samples (a), (b), (c), and (TP). The longer the anodizing time of the sample (c) the polarization test results in a corrosion current (I_{corr}) of 2.4×10^{-7} (A/cm²) and its corrosion value is 0.0030 (mmPY). The results of the EIS test obtained 3 graphs, namely the nyquist graph showing that the anodized sample has a graph that tends to be small in the radius of the curve. At the high-frequency range (10⁻⁵–10⁻¹) bode magnitude, sample (c) has a higher magnitude impedance and at a high-frequency phase angle bode of 34.560 Hz indicates sample (c) has a higher phase angle up to -36.403°. The results of microstructure observation (SEM) in samples (a), (b), (c), and (TP). The growth of the alumina layer is seen in the anodized sample. When the corrosion rate value is low, the corrosion resistance value increases. The longer the anodizing time, the more the alumina layer on the surface grows.

Keywords : Anodizing, Propeller, Corrosion, Aluminum Waste, Polarization

FOREWORD

All praise and gratitude the author offers to the presence of Allah SWT., for all the abundance of His grace and gifts, so that the author can complete the thesis entitled “EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY BASED PROPELLERS ON CORROSION RESISTANCE” well and as expected.

This thesis was written as one of the requirements to obtain a Bachelor of Engineering degree in the Mechanical Engineering Study Program, Faculty of Engineering, Computer Science, and Design, Nusa Putra University. In the process of compiling this thesis, the author realizes that the completion of this research cannot be separated from the help, support, and guidance of various parties. Therefore, the author humbly expresses his deepest gratitude to:

1. Ibu Irnawati and Ruli Febrilian, who have always been the reason the author continues to be enthusiastic in completing this research. Thank you for your endless prayers, love, and support.
2. Mr. Dr. H. Kurniawan, ST., M.Si., MM. as the Chancellor of Nusa Putra University.
3. Mr. Lazuardi Akmal Islami M.Si., as the Head of the Mechanical Engineering Study Program and also the Supervisor who always provides direction and support so that this thesis can be completed.
4. Prof. Dr. Sivakumar N S, B.E., M.E., Ph.D. and Mr. Zaid Sulaiman, M.T. As examiners who have provided input for the research that has been done.
5. The lecturers of the Mechanical Engineering Study Program who have provided knowledge and support during the study period.
6. My best friend Muhammad Yunus Fadilah, S.T., who has accompanied me for 2 years in this research. Thank you for your dedication and the stories we have shared together.
7. Meira Zaliyanti, S.S., a partner who has always provided endless encouragement, support, and motivation throughout the process of writing

this thesis. Thank you for your prayers, hopes, and presence, which have always been a source of inspiration and strength for the author.

8. Ai Nurelah, S.M., and Rio Restu Rahayu, A.Md.T., who are always there to share stories. Thank you for being good siblings and playing vital roles in the author's life journey.
9. Explorationi XIII and Jumpa Rimba families, who have always been a source of encouragement and companionship throughout this life. Thank you for your support.
10. Fellow students of the Mechanical Engineering Department, especially class of 21, who always provide support and a sense of togetherness to the author during this study period.

The author realizes that this thesis is far from perfect. Therefore, he welcomes any constructive suggestions and criticisms for future improvement. He hopes that this thesis will provide benefits, both academically and practically, and contribute to the development of science, particularly in the field of mechanical engineering.

Sukabumi, September 27, 2025

Irul Irawadi

Author

STATEMENT AGREEMENT PUBLICATION THESIS SHEET FOR ACADEMIC PURPOSE

As an academic member of NUSA PUTRA UNIVERSITY, I, the undersigned:

Name : Irul Irawadi

Student ID 20210110051

Department : Mechanical Engineering

Type of Work : Thesis

For the sake of scientific development, agree to provide to the University Nusa
Son **Right Free Royalty Non-exclusive** for scientific work entitled:

**EFFECT OF ANODIZATION TIME OF WASTE ALUMINUM ALLOY
BASED PROPELLERS ON CORROSION RESISTANCE**

Along with device Which There is (If required). With right free royalty This non-exclusive Nusa Putra University has the right to store, transfer media/format, manage in the form of a database, maintain and publish task end I during still list Name I as author/creator and as copyright owner.

Thus I make this statement in truth.

Made in : Sukabumi

On September 27, 2025

That state

Irul Irawadi

LIST OF CONTENTS

THESIS	i
AUTHOR'S DECLARATION SHEET	ii
THESIS APPROVAL SHEET	iii
THESIS APPROVAL SHEET	iv
MOTTO.....	v
ABSTRACT	vii
FOREWORD	viii
STATEMENT AGREEMENT PUBLICATION THESIS SHEET	x
LIST OF CONTENTS.....	xi
LIST OF FIGURES.....	xiv
LIST OF TABLES	xv
CHAPTER I INTRODUCTION	1
1.1 Background of the Study	1
1.2 The Problems of the Research.....	3
1.3 The Objectives of the Research.....	3
1.4 Scope of Problem of the Research	3
1.5 The Benefits of the Research.....	3
CHAPTER II LITERATURE REVIEW.....	4
2.1 Aluminum	4
2.1.1 Aluminum Waste	4
2.1.2 Composition of Aluminum Waste	5
2.2 Corrosion	6
2.2.1 Types of corrosion	6
2.2.2 Factors causing corrosion	7

2.2.3 Impact of corrosion	7
2.2.4 Corrosion Prevention.....	8
2.3 Propeller	8
2.4 Anodization.....	9
2.4.1 Anodizing Process	9
2.4.2 Anodizing stages	11
2.5 Morphology (SEM)	11
2.6 Potentiodynamic polarization.....	12
2.7 Electrochemical Impedance Spectroscopy (EIS).....	14
CHAPTER III RESEARCH METHODOLOGY.....	17
3.1 Experimental Details	17
3.2 Literature Gaps.....	18
3.3 Equipments and Materials Used.....	18
3.4 Sample Preparation.....	20
3.5 Anodizing Stages.....	20
3.6 Material Testing.....	22
3.5.1 Potentiodynamic Polarization.....	22
3.5.2 Electrochemical Impedance Spectroscopy (EIS).....	22
3.5.3 Microstructure observation.....	23
CHAPTER IV DISCUSSION.....	24
4.1 Results of Potentiodynamic Polarization Testing.....	24
4.2 Validation of Electrochemical Impedance Spectroscopy (EIS) Test	26
4.3 Morphological Test Results Analysis(SEM)	28
CHAPTER V CONCLUSIONS AND SUGGESTIONS.....	34
5.1 Conclusion	34

5.2 Suggestions.....	34
LITERATURE.....	35
ATTACHMENT.....	39
Appendix 1. Results of Potentiodynamic Polarization Testing.....	39
Appendix 2. Electrochemical impedance spectroscopy (EIS) Test Results	41
Appendix 3. Scanning Electron Microscopy (SEM) Test Results.....	76

LIST OF FIGURES

Figure 2. 1 Anodizing Process Scheme [14].	10
Figure 2. 2 test results (a) 30 V voltage & (b) 34 V voltage [15].....	12
Figure 2. 3 Tafel curve [10].....	13
Figure 2. 4 Polarization curves of the anodized layer at two voltage process conditions (a) step voltage, (b) constant voltage [15].	14
Figure 2. 5 Bode diagram of AC impedance spectrum in 3.5 wt% NaCl solution (a) and (b) constant voltage; (c) and (d) step voltage [15].	15
Figure 2. 6 Nyquist diagram of AC impedance spectrum in 3.5 wt% NaCl solution (a) constant voltage; (b) step voltage [15].	16
Figure 3. 1 Experimental plan	17
Figure 3. 2 Anodizing process.....	21
Figure 4. 1 Polarization Test Results.....	24
Figure 4. 2 Nyquist curve.....	26
Figure 4. 3 (a) Bode curve of frequency against impedance magnitude (b) Bode curve of frequency against phase angle.....	27
Figure 4. 4 Scheme of formation of anodized layer (a) natural layer, (b) pore layer grows above the barrier (c) pore layer grows larger & (d) growth of perfect barrier and pore layers	28
Figure 4. 5 SEM-SED 500x test results (a) 30 minutes, (b) 45 minutes, (c) 60 minutes, and (d) without treatment.....	29
Figure 4. 6 Illustration of layer thickness (a) 30 minutes, (b) 45 minutes, (c) 60 minutes, and (d) without treatment	30
Figure 4. 7 SEM-SED results 2000x (a) 30 minutes, (b) 45 minutes, (c) 60 minutes, and (d) without treatment.....	31

LIST OF TABLES

Table 3. 1 use of machine, instruments and safety equipment	18
Table 3. 2 Details of Materials, chemicals used	19
Table 3. 3 Etching Solution Parameters	20
Table 3. 4 Anodizing Solution Parameters	21
Table 3. 5 Anodizing Sample	21
Table 4. 1 parameters from polarization test results.....	25

CHAPTER I

INTRODUCTION

1.1 Background of the Study

Aluminum waste is used aluminum material or waste that can be recycled and reused in the production process. Aluminum is one of the most widely used metals in the world due to its various advantages, including light weight, rust resistance, good electrical conductivity, and easy recycling. Therefore, the management of aluminum waste is very important in the context of sustainability and resource management [1]. Aluminum products can be produced through two methods, namely the casting process and the forming process. Aluminum made through the casting process is generally used for household appliances or vehicle parts, such as rims, pistons, engine blocks, and so on [2]. Meanwhile, aluminum resulting from the forming process is usually processed using place, roll, or extrusion techniques to create products such as aluminum profiles and plates that are widely used in the construction sector [3].

Aluminum waste can be used to make propellers. A propeller is a machine element that transmits power by converting rotational motion into thrust. This device operates by harnessing the power of the engine, which is channeled through a shaft to create thrust. Propellers themselves are widely used in several industries, such as aviation, maritime, and various other industries that utilize energy-generating machinery. For this reason, the materials used and the type of testing greatly influence the quality of the propeller [4].

In some cases involving ship propellers, damage is often caused by seawater, which corrodes metal. Corrosion is the destructive result of a chemical reaction between metal or metal alloys and their environment. Corrosion cannot be stopped, but it can be controlled in various ways. One way to control corrosion is by using anodizing. Corrosion is characterized by a slow but continuous process. In some cases, corrosion will form a thin layer like a stain or a collection of spots that function to inhibit further corrosion. In other types, corrosion will form products characterized by corrosion products in the form of oxides and leave traces in the

form of pores that provide no protection against corrosion. As is known, the oxide layer present on the metal surface can protect the metal from further corrosion attacks. Metal corrosion resistance can be improved by anodizing or cladding processes [5].

Anodization is a coating process using an electrolysis method that converts the aluminum surface to be coated into aluminum oxide (Al_2O_3). Based on this explanation, it is known that the main principle of anodization is electrolysis, namely a chemical reaction that is formed due to the flow of electric current. The process includes two important components, namely electrodes and electrolytes. In the electrolysis process, the cathode functions as a negative pole that sends current to the workpiece, while the anode functions as a positive pole that functions as the workpiece itself [5]. The results of anodization are greatly influenced by the selection of anodization process parameters, including current density, potential difference, process time, distance between the anode and cathode, and the type and temperature of the electrolyte solution [6].

A study was conducted by Mochamad Muzaki et al., in his research, it was stated that variations in the anodization process time had an influence on the thickness of the anodized layer formed, where a time variation of 7 minutes produced the thinnest layer of 10.34 microns. While a time variation of 11 minutes produced the thickest layer thickness of 16.73 microns [6]. Muhammad Faruq Alfalah in his research concluded that the longer the anodization time would affect the decrease in the corrosion rate, this was because the longer the anodization time would provide an opportunity for the oxide layer to form pores perfectly [5].

This study investigated the effect of time variations on the corrosion resistance of anodized aluminum waste. Compared to previous studies, this study chose a relatively longer anodization time. This study aimed to further understand the effect of time on the corrosion resistance developed during the anodization process.

1.2 The Problems of the Research

The problem formulation raised in this research is as follows:

1. How does anodizing time affect the increase in corrosion resistance of propellers made from waste aluminum alloy?
2. How does anodizing time affect the growth of the alumina layer on propellers made from waste aluminum alloy?

1.3 The Objectives of the Research

The objectives of this research for the author include:

1. Knowing the effect of anodizing time on corrosion resistance of propellers made from waste aluminum alloy.
2. To determine the effect of anodizing time on the growth of the alumina layer on propellers made from waste aluminum alloy.

1.4 Scope of Problem of the Research

So that this discussion runs as expected and does not become too broad, the scope of problem in this research include:

1. The material used is Aluminum Waste .
2. The material is coated using the anodizing method.
3. Corrosion Testing with Potentiodynamic Polarization & Electrochemical Impedance Spectroscopy (EIS).
4. Microstructural observation using Scanning Electron Microscopy (SEM).

1.5 The Benefits of the Research

The benefits of this research for the author include:

1. It provides experience for the author in soft skills and hard skills regarding the anodization process and corrosion testing.
2. The application of this post-research can be applied to propellers, especially with waste aluminum material.

CHAPTER V

CONCLUSIONS AND SUGGESTIONS

5.1 Conclusion

From the research conducted on the effect of propeller anodization time on corrosion resistance, the following conclusions can be drawn:

1. Corrosion test results show that anodizing time significantly influences corrosion resistance. The longer the anodizing time, the greater the corrosion resistance.
2. The results of scanning electron microscopy (SEM) images show that the anodization time greatly affects the growth process of the alumina layer, the longer the anodization time, the more barrier layers and pore layers will be formed on the surface of the material.

5.2 Suggestions

In further research, the author has several suggestions that may be used to develop research, including:

1. Find out and explore topics in detail regarding the anodizing process and corrosion testing with supporting references.
2. The time used for the anodizing process must be longer, so that the layer formed on the surface of the material is more even and perfect.
3. Before testing the sample, ensure that the sample is ready to be tested, in order to get good results.

LITERATURE

- [1] D. Aditia, R. Usman, And Yuniati, “Pengaruh Variasi Arus Dan Waktu Pada Anodisasi Type Hard Proses Terhadap Kekerasan Permukaan Aluminium,” *Jurnal Mesin Sains Terapan*, Vol. Vol. 3 No. 2, No. E-Issn 2597-9140, 2019.
- [2] D. Sundarajan, J. S. Senthil Kumaar, A. Muthiah, A. Manikandan, And N. S. Sivakumar, “Multi Response Optimization Of Machining Heat Treated Aluminium Alloy Using Desirability Approach,” In *Sae Technical Papers*, Sae International, 2024.
- [3] H. Purwanto And Mulyonorejo, “Pengaruh Pengecoran Ulang Terhadap Kekuatan Tarik Dan Kekerasan Pada Aluminium Cor Dengan Cetakan Pasir,” *85-189-1-Sm*, Pp. 273–277, 2010, Accessed: Jan. 21, 2024.
- [4] R. I. Yaqin *Et Al.*, “Studi Numerik Umur Kelelahan (Fatigue Life) Pada Propeller Kapal Penangkap Ikan Dengan Kapasitas Mesin 24 Hp,” *Jurnal Teknologi Terapan*, Vol. 6, No. 1, 2020.
- [5] M. Faruq Alfallah And T. Pengajar Universitas Brawijaya Jurusan Teknik Mesin, “Pengaruh Variasi Konsentrasi Asam Sulfat (H_2SO_4) Sebagai Elektrolit Terhadap Laju Korosi Aluminium Seri 6083 Pada Proses Anodisasi,” 2021.
- [6] M. Muzaki *Et Al.*, “Analisis Pengaruh Variasi Beda Potensial Dan Waktu Proses Anodizing Terhadap Karakteristik Lapisan Oksida Aluminium 6061,” 2022.
- [7] R. P. Sihombing, A. Ngatin, S. N. Junaedi, And W. Maulida, “Pengaruh Jenis Elektrolit Proses Anodisasi Aluminium Terhadap Efisiensi Proses Dan Sifat Mekanik (Kekerasan) Permukaan Dan Ketebalan Lapisan Oksida,” *Jc-T (Journal Cis-Trans): Jurnal Kimia Dan Terapannya*, Vol. 6, No. 2, Pp. 24–29, Dec. 2022.
- [8] V. S, G. P. K, S. N S, S. S, R. Subbiah, And S. A, “Tribological Behaviour Of Aa7168 Hybrid Composite Sheets For Aerospace Structures Fabricated

Through Compo Casting,” *Advances In Materials And Processing Technologies*, Vol. 8, No. Sup2, Pp. 402–410, 2022.

[9] K. Sathishkumar, R. Soundararajan, N. S. Sivakumar, G. Shanthosh, And C. Pradeep, “Investigation Of A413 Alloy With Reinforcement Of Sic And Flyash Hybrid Composites By Stir Cast Cum Forged Process On Electric Vehicle In-Wheel Motor Casing,” In *Materials Today: Proceedings*, Elsevier Ltd, 2021, Pp. 990–996. Doi: 10.1016/J.Matpr.2020.03.048.

[10] Divya, K. Srivastava, And S. Mishra, “A Review On Composition & Mechanical Strength Of Wrought Aluminum Alloy Series,” 2022.

[11] N. Sharma, G. S. Saini, G. Singh, S. Goyal, And P. Sharma, “A Comprehensive Study On Aluminium Alloy Series-A Review,” 2017.

[12] N. M. Fathurrahman, “Analisis Sifat Korosi Hasil Cor Terhadap Temperatur Pembuatan Propeller Perahu Menggunakan Metode Sand Casting,” 2023.

[13] L. Natrayan *Et Al.*, “Synthesis And Analysis Of Impregnation On Activated Carbon In Multiwalled Carbon Nanotube For Cu Adsorption From Wastewater,” *Bioinorg Chem Appl*, Vol. 2022, 2022.

[14] M. Fajar Sidiq, “Analisa Korosi Dan Pengendaliannya,” *34-Article Text-69-1-10-20220220*, Vol. 3, Pp. 25–30, 2013, Accessed: Jan. 21, 2024.

[15] R. P. Nayla, P. D. Bani, H. Udzmatillah, L. A. Islami, And S. N. Sellappan, “Variation In Current Density Of Aluminum Waste-Based Propeller Anodization To Increase Surface Hardness,” In *The 7th International Global Conference Series On Ict Integration In Technical Education & Smart Society*, Basel Switzerland: Mdpi, Aug. 2025, P. 38.

[16] M. Jaya, A. Munawir, R. Harun Irwansyah, And P. Pelayaran Banten, “Analisis Pengaruh Jumlah Daun Propeller Dan Temperatur Air Laut Terhadap Laju Korosi Dalam Menentukan Umur Pakai Propeller Perahu Nelayan Tradisional,” *Jurnal Ilmiah Teknologi Maritim*, Vol. 16, Pp. 9–16, 2022.

[17] R. Apriyanto, E. Darmana, S. Wilastari, And P. Bumi Akpelni Semarang, “Analisis Propeller Yang Tidak Balance Pada Kapal Tugboat Anugerah 1,” Vol. 4, No. 1, Pp. 1–7, 2023.

[18] S. Ulfah Mariam, A. Ibrahim, M. Prodi D-Iv Teknologi Rekayasa Manufaktur, D. Jurusan Teknik Mesin, And P. Negeri Lhokseumawe, “Pengaruh Variasi Rapat Arus Hard Anodizing Terhadap Laju Korosi Pada Aluminium 6061,” 2020.

[19] Y. Jian-Jun *Et Al.*, “Effect Of Voltage On Structure And Properties Of 2024 Aluminum Alloy Surface Anodized Aluminum Oxide Films,” *Surf Coat Technol*, Vol. 479, Mar. 2024.

[20] S. Sembodo And A. Anawati, “Combine Effect Of Temperature And Additive Ethylene Glycol On The Characteristics Of Anodic Film Formed On Aluminum Alloy Aa7075,” In *Aip Conference Proceedings*, American Institute Of Physics Inc., Apr. 2020.

[21] Z. Nikri Jofalo And P. Harmi Tjahjanti, “Seminar Nasional & Call Paper Fakultas Sains Dan Teknologi Senasains 1 St,” 2021.

[22] A. Stephani, S. Oediyani, Y. Lestari, And E. Mabruri, “Effect Of Nickel Pulsed Electrodeposition Parameters On Deposit Microstructure And Corrotion Rate Aisi 410,” *Widyariset*, Vol. 4, No. 2, P. 143, Nov. 2018.

[23] L. A. Islami, N. M. Fathurrahman, And D. Z. Sulaiman, “Analisis Sifat Korosi Hasil Cor Terhadap Temperatur Pembuatan Propeller Perahu Menggunakan Metode Sand Casting,” 2023.

[24] A. A. Khan, M. S. Kaiser, And M. Al Nur, “Investigation Of The Electrochemical Corrosion Property Of 2xxx Series Cast Aluminium Alloy In 0.3 M, 0.6 M Nacl, And Seawater Environments,” *Iop Conf Ser Mater Sci Eng*, Vol. 1305, No. 1, P. 012038, Apr. 2024.

- [25] A. Wang, K. De Silva, M. Jones, And W. Gao, “Cr-Free Anticorrosive Primers For Marine Propeller Applications,” *Polymers (Basel)*, Vol. 16, No. 3, Feb. 2024.
- [26] F. Nugroho *Et Al.*, “Pengaruh Rapat Arus Dan Waktu Anodizing Terhadap Ketebalan Lapisan Aluminium Oksida Pada Aluminium Paduan Aa 2024-T3,” 2024.
- [27] A. Wisnujati And F. Yudhanto, “Karakterisasi Lapisan Oksida Hasil Anodizing Pada Aluminium Dengan Variabel Waktu Pencelupan,” *Jurnal Rekayasa Mesin*, Vol. 14, No. 2, Pp. 525–536, Aug. 2023.

