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ABSTRACT

This research aims to develop a speech emotion recognition system in the
Indonesian language using a deep learning approach with hybrid feature extraction.
The extracted audio features consist of a combination of Mel-Frequency Cepstral
Coefficients (MFCC), Hilbert Multispectrum, and Cochleagram, which represent
the frequency, amplitude, and auditory perception aspects of a speech signal,
respectively. The dataset used is IndoWaveSentiment, containing 300 speech
samples categorized into five types of emotions: neutral, happy, surprised,
disgusted, and disappointed. Three deep learning architectures were applied:
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a
combined CNN + LSTM (Hybrid) model. Each model was trained and evaluated
based on accuracy, precision, recall, Fl-score, as well as Receiver Operating
Characteristic (ROC) curves and Area Under Curve (AUC) values. Evaluation
results showed that the hybrid model achieved the best performance with a
validation accuracy of 85.00% and an AUC of 0.997, followed by the LSTM model
(91.67%) and the CNN model (98.33%). As a form of real-world implementation,
the emotion prediction system was developed in a local web-based interface using
the Flask framework. The system allows users to upload or record audio, select the
classification model, and receive emotion prediction results in real-time. Testing
results indicate that all three models run effectively in the system and produce
accurate and responsive predictions. This study demonstrates that the combination
of hybrid feature extraction and deep learning architectures is effective in

recognizing speech emotions in the Indonesian language.

Keywords: Convolutional Neural Network, Deep Learning, Hybrid Feature
Extraction, Long Short-Term Memory, Speech Emotion Recognition
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ABSTRAK

Penelitian ini bertujuan untuk mengembangkan sistem pengenalan emosi suara
(Speech Emotion Recognition) berbahasa Indonesia menggunakan pendekatan deep
learning dengan ekstraksi fitur hybrid. Fitur suara yang digunakan terdiri dari
kombinasi Mel-Frequency Cepstral Coefficients (MFCC), Multispektrum Hilbert,
dan Cochleagram, yang masing-masing mewakili aspek frekuensi, amplitudo, dan
persepsi auditori dari sinyal suara. Dataset yang digunakan adalah
IndoWaveSentiment, yang berisi 300 sampel suara dari lima jenis emosi yaitu netral,
senang, terkejut, jijik, dan kecewa. Tiga arsitektur model deep learning diterapkan,
yaitu Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),
dan gabungan CNN + LSTM (Hybrid). Masing-masing model dilatih dan dievaluasi
berdasarkan metrik akurasi, precision, recall, Fl-score, serta kurva Receiver
Operating Characteristic (ROC) dan Area Under Curve (AUC). Hasil evaluasi
menunjukkan bahwa model Aybrid memberikan performa terbaik dengan akurasi
validasi sebesar 85,00% dan AUC sebesar 0.997, diikuti oleh model LSTM
(91,67%) dan CNN (98,33%). Sebagai bentuk implementasi nyata, sistem prediksi
emosi suara juga dikembangkan dalam bentuk antarmuka web lokal menggunakan
framework Flask. Sistem ini memungkinkan pengguna untuk mengunggah atau
merekam suara, memilih model klasifikasi, dan memperoleh hasil prediksi secara
langsung. Hasil pengujian menunjukkan bahwa ketiga model dapat berjalan dengan
baik dalam sistem dan memberikan hasil prediksi yang akurat serta responsif. Hasil
penelitian ini membuktikan bahwa kombinasi fitur Aybrid dan arsitektur model

deep learning, efektif dalam mengenali emosi suara berbahasa Indonesia.

Kata Kunci: Convolutional Neural Network, Deep Learning, FEkstraksi Fitur
Hybrid, Long Short-Term Memory, Speech Emotion Recognition
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BAB I
PENDAHULUAN

1.1.  Latar Belakang

Kemampuan mesin untuk mengenali emosi manusia melalui suara menjadi
topik yang semakin penting dalam pengembangan kecerdasan buatan (A41).
Teknologi ini telah diterapkan di berbagai sektor, seperti layanan pelanggan
berbasis A7, deteksi kondisi kesehatan mental, hingga interaksi dalam pembelajaran
daring[1]. Pada konteks layanan pelanggan, sistem yang dapat mengidentifikasi
emosi pengguna mampu memberikan respon yang lebih tepat dan personal[2]. Pada
bidang pendidikan, teknologi ini juga berpotensi membantu mengamati keadaan
emosional siswa guna meningkatkan kualitas proses belajar mengajar[3]. Penelitian
mengenai pengenalan emosi berbasis suara telah mengalami perkembangan,
tantangan utama masih berkaitan dengan perbedaan intonasi, logat, serta variasi
ekspresi emosi antar bahasa, termasuk bahasa Indonesia[4]. Setiap bahasa memiliki
karakteristik fonetik, prosodi, dan struktur kalimat yang berbeda-beda dalam
mengekspresikan emosi. Ekspresi "marah" dalam bahasa Inggris bisa disampaikan
dengan intonasi tinggi dan nada cepat, sedangkan dalam bahasa Indonesia bisa saja
diungkapkan dengan nada lebih datar namun dengan tekanan vokal tertentu.
Keberagaman logat dan dialek dalam bahasa Indonesia, seperti logat jawa, sunda,
atau batak, memperkaya kompleksitas dalam mengenali emosi secara akurat dari
sinyal suara. Hal ini membuat model yang dilatih pada data berbahasa asing tidak
selalu dapat bekerja optimal pada data berbahasa Indonesia. Oleh karena itu,
dibutuhkan penelitian khusus yang menggunakan dataset berbahasa Indonesia,
seperti IndoWaveSentiment, untuk melatih dan menguji sistem pengenal emosi agar
sesuai dengan karakteristik linguistik dan emosional masyarakat Indonesia[5].

Sejumlah penelitian sebelumnya telah membuktikan bahwa emosi manusia
dapat dikenali melalui sinyal suara menggunakan kombinasi metode dan fitur yang
tepat. Salah satu pendekatan awal dilakukan dengan menerapkan fitur MFCC dan
model LSTM untuk klasifikasi emosi dalam dataset berbahasa Inggris[6]. Penelitian
tersebut mencapai akurasi sebesar 98,80% dan berhasil diimplementasikan ke
dalam antarmuka web secara real-time, menunjukkan efektivitas LSTM dalam

menangkap pola temporal dalam data audio[6].
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Pendekatan visual berbasis spektrum juga telah dikembangkan yang dimana
mengusulkan kombinasi fitur Multispektrum Hilbert dan Cochleagram sebagai
representasi sinyal suara dalam bentuk citra untuk klasifikasi emosi. Dalam
penelitian tersebut, CNN digunakan untuk memproses citra spektrum, sementara
LSTM dimanfaatkan untuk mempelajari aspek temporal[7]. Hasilnya menunjukkan
akurasi yang cukup tinggi, yaitu 90,97% untuk CNN dan 80,62% untuk LSTM,
membuktikan  bahwa  spektrum  Hilbert dan  Cochleagram  mampu
merepresentasikan emosi secara efektif dari sinyal suara[7].

Penggunaan metode Convolutional Neural Network (CNN) dan Recurrent
Neural Network (RNN) juga digunakan sebagai pembanding, serta diterapkan
Teknik Synthetic Minority Oversampling Technique (SMOTE) untuk menangani
masalah ketidakseimbangan data[8]. Pendekatan gabungan antara Convolutional
Neural Network (CNN) dan Decision Tree telah menunjukkan kinerja klasifikasi
yang lebih unggul dibandingkan dengan metode deep learning lainnya[9].
Penggunaan fitur spektral tambahan terbukti berperan penting dalam meningkatkan
akurasi model deep learning untuk pengenalan emosi melalui suara.

Meskipun sejumlah penelitian telah dilakukan, pencapaian akurasi yang
tinggi dalam pengenalan emosi berbasis suara berbahasa Indonesia masih menjadi
kendala[10]. Salah satu upaya yang dilakukan untuk mengatasi hal tersebut adalah
dengan mengombinasikan fitur Multispektrum Hilbert dan Cochleagram guna
meningkatkan performa sistem pengenalan emosi[7]. Penerapan metode
Convolutional Neural Network (CNN) yang dikombinasikan dengan ektraksi fitur
lainnya dapat secara signifikan meningkatkan kinerja dalam mendeteksi emosi
suara dan menekankan peran penting ekstraksi fitur Mel Frequency Cepstral
Coefficient (MFCC) dalam mengoptimalkan performa model deep learning untuk
klasifikasi emosi[11]. Pemanfaatan dataset IndoWaveSentiment dalam penelitian
ini dipilih karena kelengkapan dan relevansinya dalam merepresentasikan ekspresi
emosional dalam bahasa Indonesia. Berbeda dengan sejumlah dataset sebelumnya
yang umumnya berbasis bahasa Inggris, dataset ini menawarkan keragaman emosi
dalam situasi percakapan yang lebih sesuai dengan konteks lokal. Dengan
demikian, penggunaan dataset ini diharapkan mampu menghasilkan model yang

lebih responsif terhadap nuansa fonetik dan prosodi khas bahasa Indonesia[5].



Berdasarkan identifikasi masalah dan kajian terhadap penelitian
sebelumnya, studi ini bertujuan untuk merancang dan mengembangkan model
pengenalan emosi berbasis suara berbahasa Indonesia dengan pendekatan deep
learning. Model yang dibangun akan memanfaatkan teknik ekstraksi fitur Mel
Frequency Cepstral Coefficient (MFCC), Multispektrum Hilbert dan Cochleagram
serta algoritma atau arsitektur Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM) dan gabungan CNN-LSTM guna meningkatkan akurasi
dalam klasifikasi emosi. Pendekatan ini diharapkan dapat memberikan kontribusi
yang berarti dalam kemajuan teknologi pengenalan emosi suara, terutama untuk
bahasa Indonesia, serta mendukung penerapan kecerdasan buatan di berbagai sektor

seperti pendidikan, customer service, dan pemantauan kesehatan mental.

1.2.  Rumusan Masalah
Berdasarkan latar belakang yang telah diuraikan, beberapa permasalahan
utama dalam penelitian ini adalah:

1. Bagaimana membangun model pengenalan emosi berbasis suara dalam
bahasa Indonesia dengan metode deep learning menggunakan dataset
IndoWaveSentiment dengan 5 kelas emosi (netral, senang, terkejut, jijik,
kecewa);,

2. Bagaimana ekstraksi fitur Mel Frequency Cepstral Coefficient (MFCC),
Multispektrum Hilbert dan Cochleagram dapat meningkatkan akurasi
model dalam klasifikasi emosi suara;

3. Bagaimana penggabungan ekstraksi fitur Mel Frequency Cepstral
Coefficient (MFCC), Multispektrum Hilbert, dan Cochleagram dapat
meningkatkan akurasi model dalam mengklasifikasikan emosi suara;

4. Bagaimana perbandingan performa serta model gabungan antara
Convolutional Neural Network (CNN) dan Long Short-Term Memory
(LSTM) dalam mengenali emosi berdasarkan suara pada dataset berbahasa

Indonesia;



1.3. Batasan Masalah
Untuk menjaga fokus penelitian, batasan yang diterapkan dalam penelitian
ini adalah:

1. Dataset yang digunakan adalah IndoWaveSentiment, yang memiliki 5 kelas
ekspresi emosional yaitu netral, senang, terkejut, jijik dan kecewa,

2. Audio hanya bisa membaca format wayv;

3. Ekstraksi fitur yang digunakan adalah Mel Frequency Cepstral Coefficient
(MFCC), Multispektrum Hilbert dan Cochleagram untuk mengubah sinyal
suara menjadi representasi fitur numerik;

4. Metode deep learning yang dibandingkan serta digabungkan adalah
Convolutional Neural Network (CNN) dan Long Short-Term Memory
(LSTM);

5. Evaluasi model dilakukan berdasarkan metrik akurasi, presisi, recall, FI-
score, dan AUC-ROC untuk mengukur performa klasifikasi emosi;

6. Penelitian ini hanya berfokus pada analisis suara tanpa mempertimbangkan
data teks atau ekspresi wajah.

1.4. Tujuan Penelitian

Penelitian ini bertujuan untuk mengembangkan model pengenalan emosi

berbasis suara dalam bahasa Indonesia dengan menggunakan metode deep learning.

Secara lebih spesifik, tujuan penelitian ini adalah:

1.

Mengembangkan model pengenalan emosi suara menggunakan dataset
IndoWaveSentiment yang mencakup 5 kelas emosi.

Menganalisis efektivitas ekstraksi fitur Mel Frequency Cepstral Coefficient
(MFCC), Multispektrum Hilbert dan Cochleagram dalam meningkatkan

akurasi model deep learning untuk pengenalan emosi suara.

. Menganalisis dan mengevaluasi efektivitas kombinasi ekstraksi fitur Me/

Frequency Cepstral Coefficient (MFCC), Multispektrum Hilbert, dan
Cochleagram dalam meningkatkan akurasi model klasifikasi emosi suara.

Membandingkan dan mengkombinasikan performa metode Convolutional
Neural Network (CNN) dan Long Short-Term Memory (LSTM) dalam

mengklasifikasikan emosi berdasarkan suara.



5. Mengevaluasi tingkat akurasi model dalam membedakan kelas emosi yang

terdapat dalam dataset IndoWaveSentiment.

1.5. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat dalam berbagai aspek,

baik secara akademik maupun praktis

1. Bagi Akademisi dan Peneliti

1)

2)

3)

Memberikan studi perbandingan komprehensif antara metode
Convolutional Neural Network (CNN) dan Long Short-Term
Memory (LSTM), dalam pengenalan emosi berbasis suara,
khususnya dengan data berbahasa Indonesia.

Menjadi referensi dalam pengembangan penelitian bidang speech
emotion recognition dengan efektivitas penggunaan fitur Mel
Frequency Cepstral Coefficient (MFCC), Multispektrum Hilbert,
dan Cochleagram sebagai teknik ekstraksi fitur.

Membuka peluang penelitian lanjutan yang dapat mengeksplorasi
integrasi teknik deep learning lainnya atau pengembangan dataset

lokal yang lebih representatif.

2. Bagi Praktisi dan Pengembang Sistem A/

1)

2)

Mendukung pengembangan sistem interaksi berbasis suara yang
lebih cerdas dan responsif secara emosional, seperti asisten virtual
atau sistem pembelajaran daring yang mampu memahami dan
menyesuaikan respons berdasarkan kondisi emosional pengguna.
Menyediakan model analisis sentimen berbasis suara yang lebih
akurat dan dapat diterapkan dalam berbagai bidang praktis, seperti
layanan pelanggan dan psikologi digital.

3. Bagi Masyarakat Umum

1)

Memberikan solusi dalam berbagai sektor, seperti pendidikan daring
dan layanan konseling virtual, yang membutuhkan kemampuan

sistem untuk mengenali dan merespons emosi secara tepat.



1.6.

Sistematika Penelitian

Adapun sistematika penulisan dalam penelitian ini adalah sebagai berikut

BAB I PENDAHULUAN
Berisi latar belakang, rumusan masalah, batasan masalah, tujuan

penelitian, manfaat penelitian, dan sistematika penelitian.

BAB II TINJAUAN PUSTAKA
Menyajikan teori-teori yang mendasari penelitian ini, termasuk teori
pengenalan emosi berbasis suara, machine learning, dan teknik-teknik yang

digunakan.

BAB III METODE PENELITIAN
Menguraikan metode yang digunakan dalam penelitian ini, mulai dari

pengumpulan data, pemilihan model, hingga evaluasi hasil.

BAB 1V HASIL DANPEMBAHASAN
Memperlihatkan jadwal atau timeline penelitian yang mencakup seluruh

tahapan penelitian mulai dari persiapan hingga akhir.

BAB V PENUTUP

Kesimpulan penelitian beserta saran.



5.1.

BAB V
PENUTUP

Kesimpulan

Berdasarkan hasil penelitian dan implementasi sistem pengenalan emosi

suara berbahasa Indonesia, diperoleh beberapa kesimpulan sebagai berikut :

1.

Penelitian ini berhasil membangun sistem pengenalan emosi suara
berbahasa Indonesia menggunakan metode deep learning, dengan
menggabungkan tiga jenis fitur audio yaitu MFCC, Multispektrum Hilbert,
dan Cochleagram, dalam satu representasi fitur hybrid.

Tiga model arsitektur deep learning digunakan, yaitu CNN, LSTM, dan
Hybrid CNN + LSTM, dengan tujuan mengevaluasi dan membandingkan

performa masing-masing dalam mengklasifikasikan emosi suara.

. Berdasarkan hasil pelatihan dan evaluasi, Model CNN menunjukkan

performa terbaik dengan akurasi validasi 98,33% dan AUC-ROC 1.00.
Model LSTM memberikan hasil yang baik dengan akurasi validasi 91,67%
dan AUC-ROC 1.00, menandakan kemampuannya dalam menangkap
informasi temporal dari sinyal suara. Model Hybrid meraih akurasi validasi
85,00% dan AUC-ROC 0.979, namun performanya masih di bawah dua
model lainnya, ini diakibatkan oleh arsitektur yang lebih kompleks dan
keterbatasan jumlah data.

Ketiga model berhasil diintegrasikan ke dalam sistem web lokal, yang
memungkinkan pengguna untuk memilth model, merekam atau
mengunggah suara, dan langsung memperoleh hasil prediksi emosi secara

responsif.

Secara keseluruhan, pendekatan ekstraksi fitur hybrid yang dipadukan

dengan model CNN dan LSTM terbukti efektif dan efisien dalam mengenali emosi

suara berbahasa Indonesia.
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5.2.
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Saran

Berdasarkan pelaksanaan dan hasil penelitian ini, terdapat beberapa saran

yang dapat menjadi pertimbangan untuk pengembangan penelitian selanjutnya :

1.

Perluasan dan variasi dataset, Dataset IndoWaveSentiment yang digunakan
masih terbatas dari segi jumlah dan variasi. Disarankan untuk menggunakan
dataset yang lebih besar dan beragam seperti aksen dan kondisi lingkungan
agar model dapat melakukan generalisasi lebih baik terhadap data nyata.
Pengembangan  arsitektur model, penelitian selanjutnya dapat
mengeksplorasi variasi arsitektur dalam lingkup CNN dan LSTM, seperti
penambahan lapisan, penyesuaian parameter, penggunaan BiLSTM, atau
penerapan Attention sederhana guna meningkatkan akurasi klasifikasi
emosi.

Implementasi ke sistem real-time, sistem yang masih berbasis lokal dapat
dikembangkan menjadi aplikasi real-time dan terintegrasi ke platform
seperti chatbot atau layanan interaktif agar mampu merespons emosi
pengguna secara langsung.

Pengujian di kondisi nyata, diperlukan pengujian tambahan dalam kondisi
dunia nyata yang mengandung noise atau interaksi alami, untuk mengukur

ketahanan dan keandalan model secara lebih menyeluruh.
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