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CHAPTER I  

INTRODUCTION 

 

1.1 Background 

The rapid development of technology has a huge impact on daily life today. The 

development of technology is changing people's lifestyle very quickly, making them become 

more dependent on information technology, because it is considered to have the ability to 

facilitate all activities to be more efficient, productive and economical. It is now conceivably 

impossible to discern the real from the false with the naked eye due to the development of 

advanced Artificial Intelligence (AI) trained models utilized in the changes of digital information. 

The term "Deep fakes" has gained popularity in relation to these fake media materials. Deep fake 

techniques may be used to synthesize human images using artificial intelligence. 

Deep fakes are the outcomes of using artificial intelligence to replace the voices and/or 

faces of persons in original photographs, video records, and audio recordings. Due to their 

numerous potential applications in deception, entertainment, and the propagation of false 

information, it has attracted a lot of interest. It uses artificial intelligence and machine learning 

techniques to create and modify audio and visual content that is used to disseminate misleading 

information. Deep learning and other artificial neural network techniques, including auto 

encoders or generative adversarial networks (GANs), are also used in the development of deep 

fake videos [1]. Deep fakes have been widely employed in recent years, necessitating the 

development of a system to identify them and reduce the amount of news that is fake or fabricated. 

It raises concern about this technology since processes have advanced to the point where it is 

difficult for people to discriminate between actual and false video information of faces [2]. 

Instantaneous photo and video capture and global transmission are also possible. Images and 

videos are frequently used by people to determine if an event actually took place. When "first-

hand" accounts are recorded as videos, criminal and civil cases nowadays make headlines. These 

videos frequently spread across several platforms extremely fast. The lives of people involved are 

frequently left hanging in the balance due to this harmful dependence on these photographs and 

videos since the majority of the public trusts and believe what it sees and hears. A survey stated 

that Deep fake detection techniques encounter challenges such as limited datasets, unfamiliar 

media attack methods, temporal aggregation, and the presence of unlabeled data [3]. So that it 

needs a technology to maintain the issues. Machine Learning has accelerated the production of 
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deep fake images and videos, making them faster and more cost-effective [4]. Although "deep 

fakes" carry a negative reputation, the technology is gaining traction in both commercial and 

individual settings. Recent technical progress has heightened the challenge of distinguishing 

between digitally manipulated images and authentic ones. The increasing prevalence of deep fake 

technologies has contributed to a growing sense of concern.  

Conventional methods and approaches based on deep learning have been widely utilized. 

In contrast to conventional picture forensic methods, deep learning approaches integrate feature 

extraction and feature classification within a network structure, resulting in an end-to-end, 

efficient automatic feature learning classification methodology [5]. Deep learning methodologies 

in the context of video classifications offers detailed summaries of select studies and underscores 

the key insights derived from these investigations. The presentation of these key findings is 

intended to contribute to the research community's efforts in crafting novel deep learning models 

for video classifications [6]. It possesses the capability to identify deep fake videos in real-time, 

aiding in the prevention of misinformation dissemination and safeguarding our society. This holds 

significance in addressing and mitigating the adverse impacts associated with deep fake videos 

[7]. Research on deep fakes has widely carried out by researches, using the Long Short Term 

Memory (LSTM) method which provided good level accuracy and reliability in analyze any video 

and helps detecting deep fake face which have been manipulated, preventing people from 

deframing others [8]. A research presented a method that is sensitive to temporal aspects for 

automatically identifying deep fake videos. The proposed system utilizes a convolutional LSTM 

architecture for handling frame sequences. This experiments with a diverse collection of digitally 

modified videos showed that a basic convolutional LSTM structure could reliably predict whether 

a video had been manipulated, even with just 2 seconds of video data [9]. A previous study 

presented a video deepfake detection using CNN shows that the model decreased using low 

quality image and the accuracy needs to be furter increased with medium quality videos, that it 

needs combined models for a better training [10] while the other study presented that ResNext 

CNN-LSTM effectively identified deep-fakes in videos even in a small image size [11]. Other 

research about deep fake detection in video detection of digital media forensics results 91% of 

accuracy, LSTM method is proven to have a high level of accuracy in detecting a deep fake video 

[12]. A study combining CNN-LSTM and hand-crafted facial method while the results stated that 

CNN-LSTM give better perform than the hand-crafted facial method [13]. Whilst other research 

also conducted results 90% accuracy shown in deep fake video detection using CNN ResNeXt 

and LSTM [14]. Previous study also employed a deep learning (DL) method that integrated a long 
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short-term memory (LSTM) network to analyze features extracted by a convolutional neural 

network (CNN). The primary innovation of this research was utilizing discrepancies in sequences 

and patterns of deepfakes for classification purposes [15]. 

According to previous research conducted, this research combined Long Short Term 

Memory (LSTM) and distributed computing method to detect the deep fake videos under the title 

“Enhance Deep fake detection in videos using Long Short Term Memory with Distributed 

Computing”. 

1.2 Problem Statement 

With the rapid advancement of artificial intelligence and deep learning techniques, 

creating highly realistic deep fake videos has become easier and more cost-effective. This surge 

in the availability and sophistication of deep fake technologies has resulted in an increase in the 

dissemination of misleading information, making it increasingly difficult for individuals to 

distinguish between authentic and manipulated media. The potential for these manipulated videos 

to spread misinformation poses significant risks to societal trust in digital content, highlighting 

the urgent need for effective detection mechanisms. 

Deep fake detection often lacks accuracy, leading to the potential spread of 

misinformation and the erosion of trust in digital content. To address this issue, we propose using 

Long Short Term Memory (LSTM) networks, which have shown promise in handling temporal 

data and can potentially improve the accuracy of deep fake detection systems. 

Analyzing videos in real-time while maintaining high accuracy is a significant challenge. 

The combination of LSTM networks with distributed computing offers a promising solution to 

enhance deep fake detection. By leveraging LSTM's ability to analyze sequences of data and 

distributed computing's capacity to handle large-scale video processing efficiently, we aim to 

develop a more accurate and real-time deep fake detection system that can effectively combat the 

spread of manipulated media.  

1.3 Research Objectives 

1. To increase the accuracy and efficiency of deepfake video detection by combining LSTM 

and distributed computing approaches. 

2. To Examine the performance of LSTM-based deep fake detection using distributed 

computing differ when applied to different number of deep fake cases. 
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3. To build and construct an efficient distributed computing system capable of improving 

the prediction of LSTM models for deepfake detection in real-time by using the capability 

of several computing units. The system should effectively distribute the computational 

workload, ensure data synchronization, and optimize resource utilization. 

1.4 Significance of Study 

The study of enhancing deepfake detection in videos using Long Short-Term Memory 

(LSTM) with distributed computing holds significant importance in the context of addressing the 

increasing concerns and potential threats posed by the proliferation of deepfake technology 

1.5 Research Scope 

The main scope of this study is to provide the insight combination of LSTM and 

distribute computing techniques improve the accuracy and efficiency of deep fake video detection 

compared to traditional detection methods. The combination of LSTM and distribute computing 

techniques was measured in different number of deep fake datasets to obtain the accuracy and 

efficiency of deep fake video detection compared to traditional detection methods. 

1.6 Organization of Thesis 

The rest of this thesis is organized as follows: 

− Chapter I describes the background of problem that will be discussed in the thesis 

− Chapter II describes the literature review of thesis 

− Chapter III describes the methodology of thesis  

− Chapter IV present the experiment result and discussion 

− Chapter V conclusion the thesis and future work 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In conclusion, the thesis titled "Enhance Deep Fake Detection in Videos Using Long 

Short Term Memory with Distributed Computing" represents a comprehensive exploration of 

cutting-edge technologies to bolster the capabilities of deep fake detection. The literature review 

provided a solid foundation by examining key concepts such as Deep Fake technology, 

ResNeXt_50 architecture, Artificial Intelligence, Neural Networks, Long Short-Term Memory 

(LSTM) networks, Distributed Computing, and the utilization of Confusion Matrix in the context 

of deep fake detection. The research methodology, characterized by functional requirements, 

meticulous data collection, feature extraction, LSTM modeling, and distributed computing, 

outlines a systematic and structured approach to address the challenges posed by sophisticated 

deep fake techniques. The experimental results and discussions emphasize the importance of each 

phase, ranging from data collection and preprocessing to analytics, evaluation, and prediction. 

The incorporation of distributed computing components like the Producer, Broker, and Worker 

nodes showcases the scalability and efficiency achieved in handling a multiple cases of deepfake 

videos. 

The implementation of the deep fake detection system without distributed computing 

exhibited a significant processing time, taking approximately reducing the duration from 10.8 

minutes to analyze a set of six deepfake video samples. This prolonged processing time can be 

attributed to the use of a single worker unit in the absence of distributed computing. However, 

upon integrating distributed computing into the deep fake detection system and leveraging three 

worker units, the testing duration for the same set of six deepfake samples was notably reduced 

from 10.8 minutes to 2.1 minutes, representing a 80.56% increase in speed. This enhancement in 

processing speed underscores the efficiency of the method in scaling up the detection process. 

The addition of multiple worker units through distributed computing proves instrumental in 

expediting the analysis of deepfake videos, making the system more adept at handling larger-

scale dataset cases. This optimization can significantly contribute to the timely of deepfake video 

detection. 

5.2 Future Work 

In light of the notable advancements achieved in enhancing deep fake detection through 

the integration of Long Short Term Memory (LSTM) with Distributed Computing, there are 

several promising avenues for future research and development. Firstly, the scalability and 
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efficiency demonstrated by the system highlight the potential for further optimization and 

refinement in distributed computing strategies. Exploring advanced parallel processing 

techniques and optimizing the allocation of computing resources could lead to even more 

significant reductions in processing time, particularly when dealing with larger and more complex 

datasets. 

Additionally, future work could delve into the integration of real-time processing 

capabilities into the system. Developing mechanisms for on-the-fly analysis of streaming video 

content would be particularly valuable in the context of rapid and dynamic information 

dissemination on various online platforms. This could involve the exploration of edge computing 

solutions or the integration of real-time data processing frameworks to ensure timely detection 

and response to emerging deepfake threats . 

Furthermore, considering the evolving nature of deepfake techniques, continuous 

research is needed to enhance the robustness of the detection model. This could involve the 

incorporation of more sophisticated features, continuous model training with updated datasets, 

and the exploration of ensemble learning techniques to improve overall detection accuracy. 
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