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ABSTRACT

Sentiment Analysis with Valency and Tendency Functions using BERT

Sequence Model

This study explores the potential of analyzing public opinion in Indonesia
using advanced deep learning techniques to enhance sentiment analysis. Leveraging
the BERT (Bidirectional Encoder Representations from Transformers) sequence
model, specifically the BertForSequenceClassification model, we capture nuanced
sentiment information through BERT’s deep contextualized word representations.
A dual-stage sentiment analysis framework is introduced, integrating the Tendency
and Valency models to improve accuracy. The Tendency Model classifies texts into
Low Tendency or High Tendency categories, while the Valency Model further
refines sentiment analysis within the High Tendency data by evaluating sentiment
intensity and distinguishing between positive and negative sentiments. This dual-
stage approach significantly outperforms traditional single-stage methods, which
achieved a lower accuracy of 35% due to their limited ability to capture nuanced
sentiment variations. The dual-stage model demonstrates superior performance,
achieving an accuracy of 82% and an F1 score of 78% on test data, indicating high
precision in sentiment evaluation. The study highlights the effectiveness of
combining deep learning techniques with a dual-stage framework to provide more
accurate and contextually aware sentiment classification, advancing the analysis of

public opinion with greater precision.

Keywords: Sentiment Analysis, Valency, Tendency, BERT, Deep Learning,

Text Classification
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CHAPTERII
INTRODUCTION

1.1 Background

In recent years, the use of social media has surged, embedding itself deeply
within modern society. Internet users globally are no longer limited to using social
media platforms merely to exchange personal information or communicate with
friends, colleagues, and relatives. These platforms have evolved into spaces where
users freely express their thoughts and opinions on a myriad of topics, ranging from
products, people, events, trends, to social issues. This broad spectrum of topics
reflects the diverse interests and concerns of users. Consequently, social media has
become an essential tool for understanding public opinion.

Such expressions on social media provide invaluable insights for companies
aiming to gauge customer sentiment towards their goods or services. The feedback
collected from these platforms is instrumental in aiding business improvements.
Companies analyze this feedback to refine their products and marketing strategies.
This continuous loop of feedback and improvement helps businesses stay
competitive. Understanding customer sentiment is thus a cornerstone of modern
business strategy.

Governments, institutions, and public figures can leverage these insights to
understand public perceptions and make informed decisions. By monitoring social
media, they can gauge public response to policies and initiatives. This real-time
feedback mechanism helps in shaping policies that are more aligned with public
needs. Furthermore, it enhances transparency and trust between the public and
governing bodies. Effective use of social media insights can thus lead to better
governance.

From a consumer's perspective, shared opinions and sentiments about
products on social media serve as crucial references in their decision-making
processes before making purchases. Consumers trust reviews and feedback from
other users more than traditional advertising. This exchange of information has

transformed social media into a powerful tool for consumer awareness and



education. It empowers consumers to make informed choices. Consequently, social
media reviews have become a critical factor in consumer behavior.

The 2024 elections in Indonesia, particularly the presidential race, highlight
the significant impact of social media on political discourse. Each debate, officially
facilitated by the General Election Commission (KPU), ignites extensive
discussions on social media. These discussions generate a wave of digital discourse,
amplifying the reach of political messages. Statements made by presidential and
vice-presidential candidates quickly become trending topics. This phenomenon
underscores the power of social media in shaping electoral outcomes.

This dynamic interaction on social media underscores the pivotal role of these
platforms in shaping public opinion. The polarizing effect it can have on society,
especially during election periods, makes social media a crucial battleground in the
political arena. Differences in opinions and the resulting societal polarization create
a tense atmosphere. Social media becomes a reflection of the broader political
climate. This emphasizes the importance of understanding and managing digital
discourse.

The increasing influence of social networks in expressing opinions on current
events and the rapid dissemination of online content has rendered online opinions
a valuable asset for sentiment analysis. Online opinions, viewed as sentiments,
reflect a person's views, opinions, or emotions. Consequently, the data generated on
social media platforms has become a critical resource for sentiment analysis
research. This data provides real-time insights into public sentiment. Researchers
and analysts utilize this information to predict trends and behaviors.

Sentiment Analysis is a technique in natural language processing (NLP)
utilized to identify, extract, or assess sentiments, opinions, or emotions contained
within a text, such as product reviews, social media posts, or news articles (Jim et
al., 2024; Nandwani & Verma, 2021). Visual Sentiment Analysis is a specific form
of sentiment analysis that concentrates on visual data, such as images and videos,
to recognize and evaluate the sentiments or emotions contained within that visual
content (Bhoir & Jayamalini, 2021; H. Zhang et al., 2024).

Sentiment analysis is now widely recognized not only among researchers but

also by businesses and governments (Birjali et al., 2021). Increased use of the



internet has made the web a universal and most crucial source of information.
Millions of individuals exchange their thoughts, ideas, expressions, emotions, and
opinions on social media platforms such as Twitter, YouTube, Facebook, and others,
adding a great deal of passion to human life nowadays (Srivastava & Kumar Soni,
2022). These opinions and sentiments are highly relevant to our daily lives, and as
a result, there is a need to analyze this user-generated data to automatically monitor
public opinion and assist in decision-making (Ramirez-Tinoco et al., 2018; Schuller
et al., 2015). For example, Twitter posts have been used to predict election
outcomes.

Sentiment analysis can be conducted at various levels, including document,
sentence, and aspect levels. Document-level sentiment analysis determines the
sentiment polarity of long texts such as news articles. Sentence-level sentiment
analysis examines the sentiment of shorter texts, such as news headlines or social
media comments on platforms like Twitter and Instagram. Aspect-level analysis
focuses on specific components within a text. These various levels of sentiment
analysis provide a comprehensive understanding of public sentiment across

different contexts and text lengths.

1.2 Problem Statement

Public opinion in Indonesia holds significant potential as valuable
information for sentiment analysis. The insights derived from analyzing public
sentiments are crucial for evaluating the products and services of institutions or
corporations. Public sentiment regarding any issue is typically categorized into
positive, negative, or neutral responses. This classification helps in understanding
the general mood of the population. It also assists in identifying areas needing
attention or improvement.

Existing studies on sentiment analysis have aimed to detect subjective
sentiment on specific topics, such as hotel reviews, mobile app reviews, and public
opinion on current issues on platforms like Twitter (Aslan, 2023, 2023; Chaudhry
et al., 2021; Mohbey et al., 2024). These studies predominantly use English-
language data, reflecting a need for broader linguistic and cultural inclusivity in

sentiment analysis research. Expanding research to include diverse languages will



provide a more comprehensive understanding of global sentiments. This inclusivity
is essential for accurate and relevant analysis. Broadening the scope of research can
lead to more insightful and actionable findings.

The rapid growth of social media has led to an overwhelming amount of user-
generated content, where individuals express their opinions on various topics. This
proliferation of data presents a valuable opportunity for sentiment analysis to
understand and predict public opinion. However, accurately capturing and
interpreting these sentiments remains a significant challenge, particularly given the
diverse linguistic and cultural contexts in which these opinions are expressed.
Existing sentiment analysis research predominantly focuses on English-language
data, resulting in a gap when it comes to understanding sentiments expressed in
other languages, including Indonesian. This study seeks to address this gap by
developing a robust sentiment analysis model that can effectively capture and
interpret sentiments from Indonesian language.

To achieve this goal, the study leverages advanced deep learning techniques,
specifically the BERT (Bidirectional Encoder Representations from Transformers)
sequence model. BERT, built on the Transformer architecture introduced in the
seminal paper "Attention Is All You Need," employs self-attention mechanisms to
capture intricate relationships between words in a sentence (Vaswani et al., 2017).
This bidirectional approach enables BERT to comprehend the context of each word
based on its surrounding words, facilitating accurate sentiment analysis across
diverse linguistic contexts. The tokenizer within BERT ensures comprehensive
tokenization of text inputs, accommodating even out-of-vocabulary words.

In this study, we utilize the BertForSequenceClassification model, which is
fine-tuned for sentiment analysis tasks. This model enhances the ability to capture
nuanced sentiment information by leveraging BERT's deep contextualized word
representations. Furthermore, the study enhances sentiment analysis by
incorporating the concepts of valency and tendency into the BERT-based model.
Valency represents the inherent positivity or negativity of individual words, while
tendency captures the overall sentiment trajectory within a text. This dual approach
aims to provide a comprehensive understanding of sentiments expressed in

Indonesian social media discussions.



Additionally, contextual masking is introduced to define contexts such as
individuals, political parties, or specific products, determining whether these
contexts hold certain sentiments. This method, combined with the dual assessments
of tendency and valency, aims to improve the accuracy of sentiment analysis by
providing a more thorough evaluation. The outcomes of this research endeavor to
offer actionable insights for businesses, governments, and institutions, empowering
informed decision-making processes based on a deeper understanding of public
sentiment dynamics. The research questions guiding this study are as follows:

a. How does the incorporation of contextual masking influence the accuracy
of sentiment analysis in identifying sentiments related to specific entities
such as individuals, political parties, and others?

b. What impact do the dual assessments of tendency and valency have on the
overall accuracy and comprehensiveness of sentiment analysis in
Indonesian language?

c. How does a dual-stage sentiment analysis model, utilizing both tendency
and valency assessments, compare in performance to a single-stage model

in accurately determining sentiment?

1.3 Research Objectives

a. To investigate the effect of contextual masking on the accuracy of
sentiment analysis in identifying specific entities within Indonesian text
data.

b. To evaluate the impact of dual assessments of tendency and valency on the
accuracy and comprehensiveness of sentiment analysis.

c. To compare the performance of a dual-stage sentiment analysis model
utilizing both tendency and valency assessments with a single-stage model

in accurately determining sentiment.

1.4 Significance of Study
a. The integration of BERT (Bidirectional Encoder Representations from
Transformers) for sequence classification provides robust contextual

understanding, while the novel approach of dual-stage sentiment analysis



offers comprehensive insights into public opinion. This combination can
yield valuable information for businesses, policymakers, and researchers,
facilitating more informed decision-making processes.

b. Most existing sentiment analysis research focuses on English-language
data, leaving a gap in understanding sentiments expressed in other
languages, including Indonesian. This study addresses this gap by
developing and validating a model specifically tailored for Indonesian text,
offering insights that can be applied across various sectors including
business, politics, and public opinion research.

c. The outcomes of this research can be utilized in various practical
applications, including market analysis, political sentiment tracking, and
customer feedback evaluation. By accurately capturing public sentiment,
organizations can tailor their strategies and responses to better align with
public opinion and improve engagement.

d. The study contributes to the broader field of NLP by demonstrating the
effectiveness of advanced deep learning techniques, such as BERT, in
combination with innovative sentiment analysis frameworks. This can
inspire further research and development in NLP, particularly in enhancing
the capabilities of sentiment analysis models for diverse languages and

contexts.

1.5 Limitation of Problems and Assumptions
a. One of the primary limitations of this study is the availability of labeled
data. Sentiment analysis models, particularly those employing advanced
techniques such as BERT and dual-stage sentiment analysis, rely heavily
on large volumes of labeled data for training. The quality and quantity of
labeled data directly impact the model's performance. In this study, the
dataset might not encompass a sufficiently diverse range of contexts and
sentiment expressions, leading to potential issues with overfitting and poor
generalization. An insufficient amount of labeled data can hinder the
model’s ability to accurately classify sentiments across various scenarios,

affecting the overall reliability and robustness of the results.



While the dual-stage model aims to incorporate context into sentiment
analysis, challenges remain in effectively understanding and integrating
contextual nuances. Contextual understanding in sentiment analysis
requires the model to grasp not only the sentiment conveyed but also the
underlying context and subtleties of the text. Despite improvements, the
model may still struggle with complex or ambiguous contexts, leading to
potential inaccuracies in sentiment classification. The effectiveness of
contextual analysis can vary based on the complexity of the language and
the specific nuances of the data being analyzed.

The dual-stage model evaluates sentiment through valency and tendency
components. However, accurately distinguishing between different
sentiment intensities and contexts remains a challenge. The valency model,
which assesses the positivity or negativity of sentiment, and the tendency
model, which evaluates the sentiment's direction, may have limitations in
capturing the full spectrum of sentiment expressions. In practice, these
models might not always align perfectly with human judgment,
particularly in complex or nuanced statements.

The study also addresses sentiment analysis in statements containing
mixed sentiments, where both positive and negative sentiments are
present. Accurately parsing and classifying mixed sentiments is inherently
challenging and may lead to inconsistent results. The dual-stage model
aims to improve handling of mixed sentiments, but there may still be
limitations in effectively distinguishing and representing the various
sentiment components within a single statement.

Another limitation is the generalizability of the model across different
domains and contexts. The dataset used for training and evaluation may be
specific to certain topics or styles of text, which can affect the model’s
performance when applied to other domains. The ability of the model to
generalize and accurately classify sentiments in diverse contexts beyond
the dataset is a crucial consideration for its practical applicability.

The study assumes that the dataset used for training and evaluation is

representative of the broader range of sentiment expressions and contexts.



This assumption is critical for the validity of the sentiment analysis
model’s results. If the dataset does not adequately represent the diversity
of sentiment expressions, the model’s performance and generalizability
could be adversely affected.

The study assumes the availability of adequate computational resources
for training and evaluating the BERT sequence model and dual-stage
sentiment analysis. The computational requirements for these models can
be substantial, and the assumption of sufficient resources is necessary for

conducting the analysis effectively.
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CHAPTER YV
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The research on "Sentiment as a Function of Valency and Tendency Using
BERT Sequence Model" provides significant insights into enhancing sentiment
analysis through advanced modeling techniques. This study leverages BERT
(Bidirectional Encoder Representations from Transformers) for sequence
classification, which employs Transformer-based architecture to process and
understand text sequences. BERT's method of masking, where certain words in the
text are hidden during training, enables the model to learn contextual relationships
and nuances in language. This research distinguishes itself from traditional
sentiment analysis methods by introducing a dual-stage approach that first evaluates
sentiment in terms of tendency and valency, thus providing a more nuanced
classification.

5.1.1 Model Performance

The dual-stage sentiment analysis system, integrating the Tendency and
Valency models, demonstrates a comprehensive and effective approach to
sentiment classification. The Tendency Model, evaluated on test data, achieved an
accuracy of 0.81 and an F1 score of 0.78. This model adeptly classifies texts into
Low Tendency or High Tendency categories, capturing the overall sentiment
direction and providing a foundational understanding of sentiment orientation. By
identifying whether a text exhibits a high or low tendency, the Tendency Model sets
the stage for more nuanced sentiment analysis.

Following the initial classification, the Valency Model, which further refines
sentiment analysis within the High Tendency data, achieved a higher accuracy of
0.83 and an F1 score of 0.82 on the test data. This model evaluates the sentiment
intensity, distinguishing between positive and negative sentiments with high
precision. The improved performance of the Valency Model highlights its
effectiveness in assessing sentiment nuances within the context identified by the
Tendency Model.

10



In contrast, traditional single-stage sentiment analysis methods, which do not
incorporate separate assessments of tendency and valency, achieved a significantly
lower accuracy of 0.35. This notable disparity underscores the limitations of single-
stage approaches in capturing the nuanced and contextually variable nature of
sentiments effectively.

The dual-stage system's overall performance on the test data, with an average
accuracy of approximately 0.82 and a combined F1 score of 0.78, reflects its
advanced capability in integrating tendency and valency for a more detailed and
accurate sentiment analysis. While this accuracy indicates strong performance, it
also suggests that the dual-stage system offers substantial improvements over
traditional methods, demonstrating enhanced contextual awareness and precision in
sentiment classification.

In summary, the integration of the Tendency and Valency Models represents
a significant advancement in sentiment analysis, providing a robust and precise tool
for capturing and differentiating nuanced sentiments effectively.

5.1.2 Strengths of the Dual-Stage Model

» Nuanced Sentiment Analysis: The dual-stage model’s ability to
evaluate both tendency and valency offers a more detailed
understanding of sentiment, allowing for accurate differentiation
between subtle sentiment variations. This capability is particularly
useful in complex statements where context plays a crucial role.

+ Contextual Awareness: The model’s integration of contextual
information enhances its ability to accurately reflect sentiment
nuances. This is evident in scenarios where traditional context-free
models may fail to capture the sentiment’s true nature due to a lack of

contextual understanding.

5.1.3 Limitations and Areas for Improvement:
« Dataset Limitations: Despite its strengths, the dual-stage model's
accuracy is limited by the available dataset. The current dataset may
not fully represent the range of possible contexts and sentiments,

which affects the model’s generalization and robustness. The accuracy
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achieved, while promising, highlights the need for a more extensive
dataset to better capture diverse contexts and sentiment expressions.

» Handling Mixed Sentiments: The model struggles with accurately
interpreting mixed sentiments within complex statements. This
limitation underscores the need for further refinement in how the
model processes and integrates multiple sentiment components.

» Need for Enhanced Labeling: The effectiveness of the model is also
constrained by the quality and quantity of labeled data. More
comprehensive labeling, particularly in varied contexts, will
strengthen the model’s ability to generalize and improve its predictive

performance.

5.2 Recommendations

To enhance the effectiveness and applicability of sentiment analysis models,
several key recommendations should be considered for future research and
development.

Firstly, expanding and diversifying the dataset used for training and
evaluation is crucial. A broader dataset that includes a variety of contexts, topics,
and sentiment labels will enable the model to capture a wider range of sentiment
expressions and nuances. This diversification will not only improve the model's
ability to generalize but also enhance its robustness across different types of textual
data. Incorporating more examples of mixed sentiments, complex sentence
structures, and varying levels of emotional intensity will help the model to better
understand and classify sentiment in diverse scenarios.

In addition to expanding the dataset, exploring alternative deep learning
algorithms beyond BERT is recommended. While BERT has demonstrated
significant capabilities in sequence classification, models such as GPT-4,
RoBERTa, and XLNet offer different strengths and architectural innovations. For
instance, GPT-4's capabilities in generating contextually rich text might provide
complementary insights, while RoOBERTa's enhancements over BERT could yield

better performance in certain tasks. Experimenting with these models could reveal
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new ways to improve sentiment analysis, potentially leading to better performance
in specific contexts or more nuanced sentiment classification.

Moreover, integrating advanced natural language processing (NLP)
techniques can further refine sentiment analysis. Techniques such as syntactic
parsing, which analyzes sentence structure, and semantic role labeling, which
identifies roles of words in sentences, can add layers of contextual understanding.

These methods can help the model to better interpret complex sentences and mixed
sentiments, which are often challenging for traditional models to handle. For
instance, parsing sentence structure can reveal underlying sentiments that are

obscured by complex phrasing, while semantic role labeling can clarify the roles of
different elements in a sentence, improving the accuracy of sentiment classification.
Additionally, continuous improvement of the dual-stage sentiment analysis
system should be a priority. This includes refining the valency evaluation
component to better distinguish between varying degrees of emotional intensity.

Enhancing the model’s sensitivity to different valency levels can lead to more
precise sentiment analysis, especially in cases where the intensity of sentiment is

crucial. Regular updates and training with new data will also help in adapting to
evolving language use and sentiment expression patterns.

Finally, it is essential to ensure that evaluation and preprocessing methods are
consistent throughout the model development lifecycle. Inconsistent methods
between training and testing phases can lead to inaccurate results and hinder model
performance. Establishing rigorous and uniform evaluation protocols will provide
more reliable insights into the model’s effectiveness and ensure that improvements
are based on accurate assessments.

By addressing these recommendations, future research can advance sentiment
analysis technologies, leading to more accurate, nuanced, and practical applications
in real-world scenarios. These enhancements will contribute to the development of
more robust sentiment analysis systems that are better equipped to handle the

complexities of human language and emotion.
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