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ABSTRACT 

 

 

Sentiment Analysis with Valency and Tendency Functions using BERT 

Sequence Model 

 

This study explores the potential of analyzing public opinion in Indonesia 

using advanced deep learning techniques to enhance sentiment analysis. Leveraging 

the BERT (Bidirectional Encoder Representations from Transformers) sequence 

model, specifically the BertForSequenceClassification model, we capture nuanced 

sentiment information through BERT’s deep contextualized word representations. 

A dual-stage sentiment analysis framework is introduced, integrating the Tendency 

and Valency models to improve accuracy. The Tendency Model classifies texts into 

Low Tendency or High Tendency categories, while the Valency Model further 

refines sentiment analysis within the High Tendency data by evaluating sentiment 

intensity and distinguishing between positive and negative sentiments. This dual- 

stage approach significantly outperforms traditional single-stage methods, which 

achieved a lower accuracy of 35% due to their limited ability to capture nuanced 

sentiment variations. The dual-stage model demonstrates superior performance, 

achieving an accuracy of 82% and an F1 score of 78% on test data, indicating high 

precision in sentiment evaluation. The study highlights the effectiveness of 

combining deep learning techniques with a dual-stage framework to provide more 

accurate and contextually aware sentiment classification, advancing the analysis of 

public opinion with greater precision. 

 

Keywords: Sentiment Analysis, Valency, Tendency, BERT, Deep Learning, 

Text Classification 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

In recent years, the use of social media has surged, embedding itself deeply 

within modern society. Internet users globally are no longer limited to using social 

media platforms merely to exchange personal information or communicate with 

friends, colleagues, and relatives. These platforms have evolved into spaces where 

users freely express their thoughts and opinions on a myriad of topics, ranging from 

products, people, events, trends, to social issues. This broad spectrum of topics 

reflects the diverse interests and concerns of users. Consequently, social media has 

become an essential tool for understanding public opinion. 

Such expressions on social media provide invaluable insights for companies 

aiming to gauge customer sentiment towards their goods or services. The feedback 

collected from these platforms is instrumental in aiding business improvements. 

Companies analyze this feedback to refine their products and marketing strategies. 

This continuous loop of feedback and improvement helps businesses stay 

competitive. Understanding customer sentiment is thus a cornerstone of modern 

business strategy. 

Governments, institutions, and public figures can leverage these insights to 

understand public perceptions and make informed decisions. By monitoring social 

media, they can gauge public response to policies and initiatives. This real-time 

feedback mechanism helps in shaping policies that are more aligned with public 

needs. Furthermore, it enhances transparency and trust between the public and 

governing bodies. Effective use of social media insights can thus lead to better 

governance. 

From a consumer's perspective, shared opinions and sentiments about 

products on social media serve as crucial references in their decision-making 

processes before making purchases. Consumers trust reviews and feedback from 

other users more than traditional advertising. This exchange of information has 

transformed social media into a powerful tool for consumer awareness and 
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education. It empowers consumers to make informed choices. Consequently, social 

media reviews have become a critical factor in consumer behavior. 

The 2024 elections in Indonesia, particularly the presidential race, highlight 

the significant impact of social media on political discourse. Each debate, officially 

facilitated by the General Election Commission (KPU), ignites extensive 

discussions on social media. These discussions generate a wave of digital discourse, 

amplifying the reach of political messages. Statements made by presidential and 

vice-presidential candidates quickly become trending topics. This phenomenon 

underscores the power of social media in shaping electoral outcomes. 

This dynamic interaction on social media underscores the pivotal role of these 

platforms in shaping public opinion. The polarizing effect it can have on society, 

especially during election periods, makes social media a crucial battleground in the 

political arena. Differences in opinions and the resulting societal polarization create 

a tense atmosphere. Social media becomes a reflection of the broader political 

climate. This emphasizes the importance of understanding and managing digital 

discourse. 

The increasing influence of social networks in expressing opinions on current 

events and the rapid dissemination of online content has rendered online opinions 

a valuable asset for sentiment analysis. Online opinions, viewed as sentiments, 

reflect a person's views, opinions, or emotions. Consequently, the data generated on 

social media platforms has become a critical resource for sentiment analysis 

research. This data provides real-time insights into public sentiment. Researchers 

and analysts utilize this information to predict trends and behaviors. 

Sentiment Analysis is a technique in natural language processing (NLP) 

utilized to identify, extract, or assess sentiments, opinions, or emotions contained 

within a text, such as product reviews, social media posts, or news articles (Jim et 

al., 2024; Nandwani & Verma, 2021). Visual Sentiment Analysis is a specific form 

of sentiment analysis that concentrates on visual data, such as images and videos, 

to recognize and evaluate the sentiments or emotions contained within that visual 

content (Bhoir & Jayamalini, 2021; H. Zhang et al., 2024). 

Sentiment analysis is now widely recognized not only among researchers but 

also by businesses and governments (Birjali et al., 2021). Increased use of the 
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internet has made the web a universal and most crucial source of information. 

Millions of individuals exchange their thoughts, ideas, expressions, emotions, and 

opinions on social media platforms such as Twitter, YouTube, Facebook, and others, 

adding a great deal of passion to human life nowadays (Srivastava & Kumar Soni, 

2022). These opinions and sentiments are highly relevant to our daily lives, and as 

a result, there is a need to analyze this user-generated data to automatically monitor 

public opinion and assist in decision-making (Ramírez-Tinoco et al., 2018; Schuller 

et al., 2015). For example, Twitter posts have been used to predict election 

outcomes. 

Sentiment analysis can be conducted at various levels, including document, 

sentence, and aspect levels. Document-level sentiment analysis determines the 

sentiment polarity of long texts such as news articles. Sentence-level sentiment 

analysis examines the sentiment of shorter texts, such as news headlines or social 

media comments on platforms like Twitter and Instagram. Aspect-level analysis 

focuses on specific components within a text. These various levels of sentiment 

analysis provide a comprehensive understanding of public sentiment across 

different contexts and text lengths. 

 

1.2 Problem Statement 

Public opinion in Indonesia holds significant potential as valuable 

information for sentiment analysis. The insights derived from analyzing public 

sentiments are crucial for evaluating the products and services of institutions or 

corporations. Public sentiment regarding any issue is typically categorized into 

positive, negative, or neutral responses. This classification helps in understanding 

the general mood of the population. It also assists in identifying areas needing 

attention or improvement. 

Existing studies on sentiment analysis have aimed to detect subjective 

sentiment on specific topics, such as hotel reviews, mobile app reviews, and public 

opinion on current issues on platforms like Twitter (Aslan, 2023, 2023; Chaudhry 

et al., 2021; Mohbey et al., 2024). These studies predominantly use English- 

language data, reflecting a need for broader linguistic and cultural inclusivity in 

sentiment analysis research. Expanding research to include diverse languages will 
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provide a more comprehensive understanding of global sentiments. This inclusivity 

is essential for accurate and relevant analysis. Broadening the scope of research can 

lead to more insightful and actionable findings. 

The rapid growth of social media has led to an overwhelming amount of user- 

generated content, where individuals express their opinions on various topics. This 

proliferation of data presents a valuable opportunity for sentiment analysis to 

understand and predict public opinion. However, accurately capturing and 

interpreting these sentiments remains a significant challenge, particularly given the 

diverse linguistic and cultural contexts in which these opinions are expressed. 

Existing sentiment analysis research predominantly focuses on English-language 

data, resulting in a gap when it comes to understanding sentiments expressed in 

other languages, including Indonesian. This study seeks to address this gap by 

developing a robust sentiment analysis model that can effectively capture and 

interpret sentiments from Indonesian language. 

To achieve this goal, the study leverages advanced deep learning techniques, 

specifically the BERT (Bidirectional Encoder Representations from Transformers) 

sequence model. BERT, built on the Transformer architecture introduced in the 

seminal paper "Attention Is All You Need," employs self-attention mechanisms to 

capture intricate relationships between words in a sentence (Vaswani et al., 2017). 

This bidirectional approach enables BERT to comprehend the context of each word 

based on its surrounding words, facilitating accurate sentiment analysis across 

diverse linguistic contexts. The tokenizer within BERT ensures comprehensive 

tokenization of text inputs, accommodating even out-of-vocabulary words. 

In this study, we utilize the BertForSequenceClassification model, which is 

fine-tuned for sentiment analysis tasks. This model enhances the ability to capture 

nuanced sentiment information by leveraging BERT's deep contextualized word 

representations. Furthermore, the study enhances sentiment analysis by 

incorporating the concepts of valency and tendency into the BERT-based model. 

Valency represents the inherent positivity or negativity of individual words, while 

tendency captures the overall sentiment trajectory within a text. This dual approach 

aims to provide a comprehensive understanding of sentiments expressed in 

Indonesian social media discussions. 
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Additionally, contextual masking is introduced to define contexts such as 

individuals, political parties, or specific products, determining whether these 

contexts hold certain sentiments. This method, combined with the dual assessments 

of tendency and valency, aims to improve the accuracy of sentiment analysis by 

providing a more thorough evaluation. The outcomes of this research endeavor to 

offer actionable insights for businesses, governments, and institutions, empowering 

informed decision-making processes based on a deeper understanding of public 

sentiment dynamics. The research questions guiding this study are as follows: 

a. How does the incorporation of contextual masking influence the accuracy 

of sentiment analysis in identifying sentiments related to specific entities 

such as individuals, political parties, and others? 

b. What impact do the dual assessments of tendency and valency have on the 

overall accuracy and comprehensiveness of sentiment analysis in 

Indonesian language? 

c. How does a dual-stage sentiment analysis model, utilizing both tendency 

and valency assessments, compare in performance to a single-stage model 

in accurately determining sentiment? 

 

1.3 Research Objectives 

a. To investigate the effect of contextual masking on the accuracy of 

sentiment analysis in identifying specific entities within Indonesian text 

data. 

b. To evaluate the impact of dual assessments of tendency and valency on the 

accuracy and comprehensiveness of sentiment analysis. 

c. To compare the performance of a dual-stage sentiment analysis model 

utilizing both tendency and valency assessments with a single-stage model 

in accurately determining sentiment. 

 

1.4 Significance of Study 

a. The integration of BERT (Bidirectional Encoder Representations from 

Transformers) for sequence classification provides robust contextual 

understanding, while the novel approach of dual-stage sentiment analysis 
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offers comprehensive insights into public opinion. This combination can 

yield valuable information for businesses, policymakers, and researchers, 

facilitating more informed decision-making processes. 

b. Most existing sentiment analysis research focuses on English-language 

data, leaving a gap in understanding sentiments expressed in other 

languages, including Indonesian. This study addresses this gap by 

developing and validating a model specifically tailored for Indonesian text, 

offering insights that can be applied across various sectors including 

business, politics, and public opinion research. 

c. The outcomes of this research can be utilized in various practical 

applications, including market analysis, political sentiment tracking, and 

customer feedback evaluation. By accurately capturing public sentiment, 

organizations can tailor their strategies and responses to better align with 

public opinion and improve engagement. 

d. The study contributes to the broader field of NLP by demonstrating the 

effectiveness of advanced deep learning techniques, such as BERT, in 

combination with innovative sentiment analysis frameworks. This can 

inspire further research and development in NLP, particularly in enhancing 

the capabilities of sentiment analysis models for diverse languages and 

contexts. 

 

1.5 Limitation of Problems and Assumptions 

a. One of the primary limitations of this study is the availability of labeled 

data. Sentiment analysis models, particularly those employing advanced 

techniques such as BERT and dual-stage sentiment analysis, rely heavily 

on large volumes of labeled data for training. The quality and quantity of 

labeled data directly impact the model's performance. In this study, the 

dataset might not encompass a sufficiently diverse range of contexts and 

sentiment expressions, leading to potential issues with overfitting and poor 

generalization. An insufficient amount of labeled data can hinder the 

model’s ability to accurately classify sentiments across various scenarios, 

affecting the overall reliability and robustness of the results. 
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b. While the dual-stage model aims to incorporate context into sentiment 

analysis, challenges remain in effectively understanding and integrating 

contextual nuances. Contextual understanding in sentiment analysis 

requires the model to grasp not only the sentiment conveyed but also the 

underlying context and subtleties of the text. Despite improvements, the 

model may still struggle with complex or ambiguous contexts, leading to 

potential inaccuracies in sentiment classification. The effectiveness of 

contextual analysis can vary based on the complexity of the language and 

the specific nuances of the data being analyzed. 

c. The dual-stage model evaluates sentiment through valency and tendency 

components. However, accurately distinguishing between different 

sentiment intensities and contexts remains a challenge. The valency model, 

which assesses the positivity or negativity of sentiment, and the tendency 

model, which evaluates the sentiment's direction, may have limitations in 

capturing the full spectrum of sentiment expressions. In practice, these 

models might not always align perfectly with human judgment, 

particularly in complex or nuanced statements. 

d. The study also addresses sentiment analysis in statements containing 

mixed sentiments, where both positive and negative sentiments are 

present. Accurately parsing and classifying mixed sentiments is inherently 

challenging and may lead to inconsistent results. The dual-stage model 

aims to improve handling of mixed sentiments, but there may still be 

limitations in effectively distinguishing and representing the various 

sentiment components within a single statement. 

e. Another limitation is the generalizability of the model across different 

domains and contexts. The dataset used for training and evaluation may be 

specific to certain topics or styles of text, which can affect the model’s 

performance when applied to other domains. The ability of the model to 

generalize and accurately classify sentiments in diverse contexts beyond 

the dataset is a crucial consideration for its practical applicability. 

f. The study assumes that the dataset used for training and evaluation is 

representative of the broader range of sentiment expressions and contexts. 
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This assumption is critical for the validity of the sentiment analysis 

model’s results. If the dataset does not adequately represent the diversity 

of sentiment expressions, the model’s performance and generalizability 

could be adversely affected. 

g. The study assumes the availability of adequate computational resources 

for training and evaluating the BERT sequence model and dual-stage 

sentiment analysis. The computational requirements for these models can 

be substantial, and the assumption of sufficient resources is necessary for 

conducting the analysis effectively. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 Conclusions 

The research on "Sentiment as a Function of Valency and Tendency Using 

BERT Sequence Model" provides significant insights into enhancing sentiment 

analysis through advanced modeling techniques. This study leverages BERT 

(Bidirectional Encoder Representations from Transformers) for sequence 

classification, which employs Transformer-based architecture to process and 

understand text sequences. BERT's method of masking, where certain words in the 

text are hidden during training, enables the model to learn contextual relationships 

and nuances in language. This research distinguishes itself from traditional 

sentiment analysis methods by introducing a dual-stage approach that first evaluates 

sentiment in terms of tendency and valency, thus providing a more nuanced 

classification. 

5.1.1 Model Performance 

The dual-stage sentiment analysis system, integrating the Tendency and 

Valency models, demonstrates a comprehensive and effective approach to 

sentiment classification. The Tendency Model, evaluated on test data, achieved an 

accuracy of 0.81 and an F1 score of 0.78. This model adeptly classifies texts into 

Low Tendency or High Tendency categories, capturing the overall sentiment 

direction and providing a foundational understanding of sentiment orientation. By 

identifying whether a text exhibits a high or low tendency, the Tendency Model sets 

the stage for more nuanced sentiment analysis. 

Following the initial classification, the Valency Model, which further refines 

sentiment analysis within the High Tendency data, achieved a higher accuracy of 

0.83 and an F1 score of 0.82 on the test data. This model evaluates the sentiment 

intensity, distinguishing between positive and negative sentiments with high 

precision. The improved performance of the Valency Model highlights its 

effectiveness in assessing sentiment nuances within the context identified by the 

Tendency Model. 
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In contrast, traditional single-stage sentiment analysis methods, which do not 

incorporate separate assessments of tendency and valency, achieved a significantly 

lower accuracy of 0.35. This notable disparity underscores the limitations of single- 

stage approaches in capturing the nuanced and contextually variable nature of 

sentiments effectively. 

The dual-stage system's overall performance on the test data, with an average 

accuracy of approximately 0.82 and a combined F1 score of 0.78, reflects its 

advanced capability in integrating tendency and valency for a more detailed and 

accurate sentiment analysis. While this accuracy indicates strong performance, it 

also suggests that the dual-stage system offers substantial improvements over 

traditional methods, demonstrating enhanced contextual awareness and precision in 

sentiment classification. 

In summary, the integration of the Tendency and Valency Models represents 

a significant advancement in sentiment analysis, providing a robust and precise tool 

for capturing and differentiating nuanced sentiments effectively. 

5.1.2 Strengths of the Dual-Stage Model 

• Nuanced Sentiment Analysis: The dual-stage model’s ability to 

evaluate both tendency and valency offers a more detailed 

understanding of sentiment, allowing for accurate differentiation 

between subtle sentiment variations. This capability is particularly 

useful in complex statements where context plays a crucial role. 

• Contextual Awareness: The model’s integration of contextual 

information enhances its ability to accurately reflect sentiment 

nuances. This is evident in scenarios where traditional context-free 

models may fail to capture the sentiment’s true nature due to a lack of 

contextual understanding. 

5.1.3 Limitations and Areas for Improvement: 

• Dataset Limitations: Despite its strengths, the dual-stage model's 

accuracy is limited by the available dataset. The current dataset may 

not fully represent the range of possible contexts and sentiments, 

which affects the model’s generalization and robustness. The accuracy 
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achieved, while promising, highlights the need for a more extensive 

dataset to better capture diverse contexts and sentiment expressions. 

• Handling Mixed Sentiments: The model struggles with accurately 

interpreting mixed sentiments within complex statements. This 

limitation underscores the need for further refinement in how the 

model processes and integrates multiple sentiment components. 

• Need for Enhanced Labeling: The effectiveness of the model is also 

constrained by the quality and quantity of labeled data. More 

comprehensive labeling, particularly in varied contexts, will 

strengthen the model’s ability to generalize and improve its predictive 

performance. 

 

5.2 Recommendations 

To enhance the effectiveness and applicability of sentiment analysis models, 

several key recommendations should be considered for future research and 

development. 

Firstly, expanding and diversifying the dataset used for training and 

evaluation is crucial. A broader dataset that includes a variety of contexts, topics, 

and sentiment labels will enable the model to capture a wider range of sentiment 

expressions and nuances. This diversification will not only improve the model's 

ability to generalize but also enhance its robustness across different types of textual 

data. Incorporating more examples of mixed sentiments, complex sentence 

structures, and varying levels of emotional intensity will help the model to better 

understand and classify sentiment in diverse scenarios. 

In addition to expanding the dataset, exploring alternative deep learning 

algorithms beyond BERT is recommended. While BERT has demonstrated 

significant capabilities in sequence classification, models such as GPT-4, 

RoBERTa, and XLNet offer different strengths and architectural innovations. For 

instance, GPT-4's capabilities in generating contextually rich text might provide 

complementary insights, while RoBERTa's enhancements over BERT could yield 

better performance in certain tasks. Experimenting with these models could reveal 
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new ways to improve sentiment analysis, potentially leading to better performance 

in specific contexts or more nuanced sentiment classification. 

Moreover, integrating advanced natural language processing (NLP) 

techniques can further refine sentiment analysis. Techniques such as syntactic 

parsing, which analyzes sentence structure, and semantic role labeling, which 

identifies roles of words in sentences, can add layers of contextual understanding. 

These methods can help the model to better interpret complex sentences and mixed 

sentiments, which are often challenging for traditional models to handle. For 

instance, parsing sentence structure can reveal underlying sentiments that are 

obscured by complex phrasing, while semantic role labeling can clarify the roles of 

different elements in a sentence, improving the accuracy of sentiment classification. 

Additionally, continuous improvement of the dual-stage sentiment analysis 

system should be a priority. This includes refining the valency evaluation 

component to better distinguish between varying degrees of emotional intensity. 

Enhancing the model’s sensitivity to different valency levels can lead to more 

precise sentiment analysis, especially in cases where the intensity of sentiment is 

crucial. Regular updates and training with new data will also help in adapting to 

evolving language use and sentiment expression patterns. 

Finally, it is essential to ensure that evaluation and preprocessing methods are 

consistent throughout the model development lifecycle. Inconsistent methods 

between training and testing phases can lead to inaccurate results and hinder model 

performance. Establishing rigorous and uniform evaluation protocols will provide 

more reliable insights into the model’s effectiveness and ensure that improvements 

are based on accurate assessments. 

By addressing these recommendations, future research can advance sentiment 

analysis technologies, leading to more accurate, nuanced, and practical applications 

in real-world scenarios. These enhancements will contribute to the development of 

more robust sentiment analysis systems that are better equipped to handle the 

complexities of human language and emotion. 
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